
 
                  ESPAÇO ENERGIA  |   ISSUE  37   |   OCTOBER  2022 
 

10 
 

Hurst exponent of 
hydrological time 
series obtained by 
R/S analysis and 
climacogram 
 
Expoente de Hurst de séries 
hidrológicas obtido por 
análise R/S e climacograma 

Mauricio Pereira Cantão 
Marcelo Rodrigues Bessa 

Daniel Henrique Marco Detzel 

Victor Gabriel Monteiro 

Programa de Pós-Graduação em Engenharia de 
Recursos Hídricos e Ambiental – PPGERHA 
Universidade Federal do Paraná – UFPR 
mpcantao@gmail.com 
marcelo.bessa@ufpr.br 
detzel@ufpr.br 
victorgmonteiro@ufpr.br 

Abstract:  

Hurst exponent is a widely known long-term memory 
behaviour parameter for time series and it can be 
determined by several methods. In this work, two methods 
are analysed: the original R/S analysis and the more recent 
one, climacogram. Both are based on the scaling approach. 
Available tools for both methods are used in the analysis of 
the fractional Gaussian noise (fGn) series and the Brazilian 
inflow time series. The aim of analysing the fGn series is to 
establish the basis of comparison of both methods and to test 
possible improvements on the climacogram routine. Then, 
the methods are applied to annual inflow time series using a 
148-hydropower plant database. The improvements on 
climacogram available routine result in different behaviours 
for the fGn and the inflow time series, according to the 
statistics applied to the results. Using georeferenced 
coordinates, a map of the Hurst exponent was made, 
indicating the higher persistence in the central region of 
Brazil. R/S analysis for the Paraná hydrographic region 
resulted in a decreasing Hurst exponent from the upstream 
to downstream direction, a behaviour which is not detected 
when using climacogram. 

Keywords: Hydrological time series, Hurst exponent, R/S 
analysis, climacogram. 

Resumo: O expoente de Hurst é amplamente conhecido 
como um parâmetro de memória de longo prazo de séries 
temporais que pode ser determinado com vários métodos. 
Neste trabalho, dois métodos foram analisados: o método 
original, análise R/S, e o mais recente, climacograma, ambos 
baseados na abordagem da análise de escala. Ferramentas 
disponíveis para ambos os métodos foram usadas na análise 
de séries de ruído gaussiano fracionário (fGn) e de vazões no 
Brasil. A análise de séries fGn teve o objetivo de servir de base 
de comparação do desempenho dos métodos e testar 
melhorias na rotina de cálculo do climacograma. Os métodos 
foram então aplicados a uma base de dados de 148 usinas 
hidrelétricas. As melhorias na rotina disponível apresentaram 
desempenho diferente nas séries fGn e de vazões, a partir da 
estatística dos resultados. Usando coordenadas 
georreferenciadas, elaborou-se um mapa do expoente de 
Hurst, indicando maior persistência na região central do 
Brasil. A análise R/S da região hidrográfica do Paraná resultou 
em expoente de Hurst decrescente a jusante, 
comportamento não identificado no uso do climacograma. 

Palavras-Chave: Séries temporais hidrológicas, expoente de 
Hurst, análise R/S, climacograma. 

1 Introduction 

This work discusses the use of two mathematical tools for 
hydrological time series analysis, by means of the Hurst 
exponent determination using rescaled range (R/S) analysis 
and climacogram. After testing both methods in synthetic 
fractional Gaussian series, the analysis focused on annual 
inflow time series located in Brazilian hydrographic regions. 

Hurst exponent is a long-range memory measure proposed 
by H. E. Hurst [1] during the calculation of River Nile Aswan 
Dam height. It relates with the persistence of inflow time 
series and its definition links up with the calculus procedure 
developed by Hurst, now called “rescaled range (R/S) 
analysis”. R/S analysis is based on the three ideal reservoir 
criteria [2] [3]: (i) uniform outflow, (ii) same water level at the 
beginning and at the end of an observation window, and (iii) 
no spills from the reservoir. 

Hurst’s law is expressed by the relation in Equation 1 [4], 

																																										𝑅!/𝑆! = 𝐶𝑛" (1) 

where 𝑅! is the range of the first 𝑛 cumulative deviations 
from the mean, and 𝑆! is the sum of the first 𝑛 standard 
deviations. Mandelbrot and Wallis [4] observed that Hurst 
used the relation 𝑅!/𝑆! ≈ (𝑛/2)" instead of equation 1 
(which, based on two parameters, allows for a better fitting) 
and asserted a different interval for 𝐻 ([0.5, 1] instead of 
[0, 1]). O’Connell et al. [5] remembered that Hurst obtained 
𝐻 =	0.5 in simple coin toss experiment, while the Nile flow 
data resulted in 𝐻 =	0.729 with standard deviation of 0.092. 
The difference between the values obtained by Hurst for 
hydrological time series (0.73) and with classical statistics 
(0.5) was called “Hurst phenomenon” [5]. 

Mandelbrot and Wallis [4] showed that the Hurst’s power law 
in R/S analysis relates to self-affine fractional Brownian 
motion (fBm) processes 𝐵"(𝑡), establishing the basis for 
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fractal and multifractal time series analyses. The 
mathematics of 𝐵"(𝑡) processes and their applications are 
discussed by Mandelbrot and Van Ness [6]. A native 
MATLAB® tool for fBm series synthesis was used and its 
performance is discussed with the help of 𝐵"(𝑡) processes 
properties. 

Several methods for Hurst exponent determination can be 
found in the literature, including power spectral density, 
autocorrelation function, detrended fluctuation analysis, 
wavelets, structure function etc. R/S analysis is the first 
method and serves as a basis for comparison. 

Climacogram, or the standard deviation as a function of time 
scale [7], is a simple method for hydrological time series 
analysis. The method was proposed by D. Koutsoyiannis and 
his ITIA research team at the National Technical University of 
Athens as an analysis tool of the Hurst phenomenon. 

The application of both methods to fBm processes and to 
hydrological annual time series showed that the climacogram 
algorithm developed by the Athens group can be improved 
with minor modifications. 

The next section introduces the fBm process and discusses 
the wavelet tool used for generation of 𝐵"(𝑡) series. The 
mathematical description of the techniques used in this work 
is also given in section 2, including its drawbacks, the 
meaning of results, and the software tools used in the 
calculations. A description of hydrological time series closes 
the section. Section 3 brings the results obtained with the 
analysed techniques. Conclusions appear in section 4. 

2 Methods 

This section comprises the computational tool used to 
synthesize fBm series, presents the R/S analysis and the 
climacogram methods for Hurst exponent determination, 
and explains the set of Brazilian hydrological time series 
analysed by means of the Hurst exponent. 

Both R/S analysis and climacogram methods are second-
order scaling approaches based on the standard deviation 
behaviour as function of the scale. 

2.1 Fractional Brownian motion process 

Mandelbrot and Ness introduced a family of Gaussian 
random functions and called them “fractional Brownian 
motion” (fBm) [6]. According to the authors, 

“𝐵(𝑡) being ordinary Brownian motion, and 𝐻 a parameter 
satisfying 0 < 𝐻 < 1, fBm of exponent 𝐻 is a moving average 
of 𝑑𝐵(𝑡), in which past increments of 𝐵(𝑡) are weighted by the 
kernel (𝑡 − 𝑠)!"#/%.” 

where 𝑡 and 𝑠 are different points of the fractional Brownian 
motion. Following Mandelbrot’s works, the properties of a 
normalized fBm process 𝐵"(𝑡) are summarized as [8]: 

- 𝐵"(𝑡) has stationary increments 

- 𝐵"(0) = 0, and 𝔼[𝐵"(𝑡)] = 0 for 𝑡 ≥ 0 

- 𝔼[𝐵"#(𝑡)] = 𝑡#" for 𝑡 ≥ 0 

- 𝐵"(𝑡) has a Gaussian distribution for 𝑡 > 0 

𝔼[∙] is the expected value, usually expressed by the mean. 
From the first three properties, it follows that the fBm 
covariance function is given by the expression in Equation 2 
[8], 

									𝔼[𝐵"(𝑠)𝐵"(𝑡)] = [𝑡#" + 𝑠#" − (𝑡 − 𝑠)#"]/2 (2) 

where the exponent 𝐻 is the same Hurst exponent proposed 
by H. E. Hurst. The non-stationary motion-like fBm process is 
associated with the “fractional Gaussian noise” (the fBm 
increment series, or fGn), which is stationary noise-like, as 
shown in Figure 1. 

 

Figure 1: Noise-like fGn series (upper) and its associated 
walk-like fBm series (lower) for exponent 𝐻 = 0.8. 

The fBm processes show fractal properties, namely: 

- Self-affinity: 𝐵"(𝑎𝑡)	~	|𝑎|"𝐵"(𝑡) 

- Long-range dependence 

- Regularity by the fulfillment of Hölder condition 

- Relation with fractal dimension, given by 𝐷 = 2 −𝐻 

The symbol “~” means “equality in distribution”, 𝐷 is the 
fractal dimension, e.g., Hausdorff or box-dimension, and 
“affinity” is used instead of “similarity” since ordinate and 
abscissa have different scaling factors, respectively |𝑎|" and 
𝑎. The interpretation of 𝐻 depends on its range: 

- 0.5	< 𝐻 <	1: Persistence. The series is long-term 
autocorrelated, i.e., a high value is probably followed by 
other high value and vice-versa. 

- 𝐻 =	0.5: Non-persistence. The series is completely 
uncorrelated. 

- 0	< 𝐻 <	0.5: Anti-persistence. A high value in the series 
is probably followed by a low value and vice-versa.  
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For fBm series synthesis, the MATLAB® Wavelet Toolbox 
function wfbm(𝐻,𝑁) has been used, where 𝐻 is the rated 
Hurst exponent (0.0	≤ 𝐻 ≤	1.0) and 𝑁 =	500 is the fBm 
series length. The documentation for the wfbm.m function 
[9] informs that, starting with the fBm process as an 
expression of fractional integral of white noise, the algorithm 
builds a biorthogonal wavelet from a given orthogonal one 
adapted to 𝐻 exponent. Then, the sample path is 
reconstructed from the new wavelet using wavelet 
decomposition, independent coefficients from Gaussian 
realizations, and approximation coefficients from fractional 
ARIMA process [10]. 

This method tends to exhibit too many high-frequency 
components [9], a behaviour avoided using downsampling 
[11] by a factor 𝛿. By opening the wfbm.m function in the 
MATLAB® platform, it is possible to change the sampling 
parameter from the default value 𝛿 =	10.  

Evaluation of the effect of changing downsampling factor on 
the synthesis of fBm series was done using their property 
𝔼[𝐵"#(𝑡)] = 𝑡#", expressed as a logarithmic relation in 
Equation 3, 

																																				log𝔼[𝐵"#(𝑡)] = 2𝐻 log 𝑡 (3) 

where 𝐻 refers to the rated Hurst exponent. The expected 
value 𝔼[∙] means that Equation 3 applies to an ensemble of 
fBm processes and not to one time series, in which case the 
process would be deterministic and governed by the relation 
𝐵"# (𝑡) = 2𝐻 log 𝑡. Equation 3 can be used as a method to 
assess the performance of tools for fBm time series synthesis. 
In this paper, it was used to analyse the effect of changing 
downsampling factor 𝛿.  

The following assessment procedure was used: for a set of 
1,000 fBm series 𝐵"(𝑡), the mean 〈𝐵"# (𝑡)〉 is calculated as a 
function of 𝑡. From the slope 𝑚 of the plot log〈𝐵"#(𝑡)〉 ×
log 𝑡, the expected Hurst exponent is 𝐻$%& = 𝑚/2. The 
process is repeated 100 times to verify the reproducibility 
and the dispersion of the simulation processes. Figure 2 
shows the resulting log-log plots for different rated values of 
𝐻 for factor 𝛿 =	10. 

 

Figure 2: log〈𝐵!%(𝑡)〉 × log 𝑡 plot used for performance 
assessment of the MATLAB® wfbm.m function. 

The procedure was repeated for different 𝛿 values (ranging 
from 1 to 200) for determining the optimal downsampling. 
Figure 3 demonstrates that each rated Hurst exponent has a 
factor 𝛿 which minimizes the difference N𝐻$%& −𝐻'()$*N, 
where 𝐻$%& is the expected Hurst exponent obtained from 
equation 3. Even with the optimal 𝛿 the difference is higher 
for extreme Hurst exponents. 

 

Figure 3: Absolute difference between 𝐻&'()* and 𝐻)+, 
obtained using log〈𝐵!%(𝑡)〉 × log 𝑡 plot (dashed line 

connects minimum values). 

The effect of using an optimal (variable) 𝛿 against a default 
(constant) 𝛿 =	10 is shown in Figure 4, without standard 
deviations. Changing 𝛿 results in Hurst exponents closer to 
rated values. The remaining deviation N𝐻$%& − 𝐻'()$*N means 
that the wfbm.m function is not able to generate fBm series 
with the exact (in statistical sense) 𝐻rated for extreme values 
of the Hurst exponent. 

 

Figure 4: Expected Hurst exponent 𝐻exp for different 
downsampling factors 𝛿 (𝐻rated given as a straight line). 

Table 1 shows 𝐻'()$*, the corresponding expected Hurst 
exponent 𝐻$%&, and the optimal downsampling factor. 
Admitting that the difference N𝐻$%& −𝐻'()$*N arises from a 
limitation of wfbm.m, the methods for the Hurst exponent 
determination for fGn series should be compared with the 
expected values in Table 1. The synthetic fBm series are 
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obtained for each of 11 𝐻'()$* values using the optimal 
downsampling factors of Figure 3 and Table 1. Again, the 
procedure starts with sets of 1,000 fBm series. The fGn series 
are obtained by simple differentiation using MATLAB® diff.m 
function and inserting a zero value as the first value. In this 
way, both fBm and the corresponding fGn series comply with 
the rule 𝐵"(0) = 0 and exhibit the same length. 

Table 1: Expected Hurst exponents, deviations from rated 𝐻 and 
downsampling factors for optimal fBm synthesis. 

𝑯𝐫𝐚𝐭𝐞𝐝 𝑯𝐞𝐱𝐩 Downs. factor 𝜹 

0.0 0.058 ± 0.004 60 
0.1 0.121 ± 0.005 50 
0.2 0.206 ± 0.007 40 
0.3 0.307 ± 0.007 40 
0.4 0.411 ± 0.008 20 
0.5 0.513 ± 0.007 30 
0.6 0.598 ± 0.010 70 
0.7 0.702 ± 0.008 30 
0.8 0.800 ± 0.009 10 
0.9 0.898 ± 0.008 1 
1.0 0.961 ± 0.007 1 

The following subsections describe R/S analysis and 
climacograms for the Hurst exponent determination. 

2.2 R/S analysis 

R/S analysis is done by means of Equations 4 and 5 [2], 

				Q2
3
R
!
= 4

3 S max4565!
∑ (𝑥7 − 𝑥̅)6
784 − min

4565!
∑ (𝑥7 − 𝑥̅)6
784 Z (4) 

																																	 lim
!→#

%$
%
&
!
= 𝐶𝑛&	 (5) 

where 𝑘 ∈ 𝑛. For the observation window 𝑛, 𝑅(𝑛) is the 
range of accumulated values, 𝑥̅ = 〈𝑥〉! is the average of time 
series 𝑥(𝑡), 𝑆(𝑛) is the standard deviation, and 𝐶 is a 
constant. Often called “subseries length” [12] [13], the 
window 𝑛 implies the scale approach of R/S analysis: portions 
of the time series with different lengths reflecting the whole 
behaviour of the underlying process. 𝑅(𝑛) coming from a 
summed series means that the R/S method is adequate for 
fGn noise-like series (see Figure 1). 𝐻9/; results from the plot 
of log𝑅/𝑆 × log𝑛. 

Calculation of 𝐻9/; involved the use of the OriginPro© 
software tool [12]. The chosen version is corrected for small 
sample bias and is based on the work from R. Weron [13]. 
Expressions for expected values 𝔼(𝑅/𝑆)! for 𝑛 ≤	340 and 
𝑛 >	340 can be found in Weron’s paper. 

The OriginPro© app is adequate for small sets of time series, 
as is the case of hydrological time series. For larger sets of fGn 
series the MATLAB™ based function hurst.m [14] was 
chosen. 

2.3 Climacogram analysis 

For a statistically independent sample of 𝑛 observations, the 
standard error is defined as 𝜎<= = std[𝑋d] = 𝜎/√𝑛, where 𝜎 is 
the standard deviation of the population, and 𝑋d is the sample 

mean. Koutsoyiannis [15] observed that the Hurst 
phenomenon can be expressed by the modified expression 
represented in Equation 6, 

																																						std[𝑋d!] = 𝜎 𝑛4>"⁄  (6) 

where 𝐻 is the Hurst exponent. For a time series 𝑋7 with a 
sufficient length 𝑁, the standard deviation 𝜎6 = std[𝑋d6] is 
defined by the sample means 𝑋d6

(!), where 𝑛 is the sample 
length, usually a fraction of 𝑁. For example, if 𝑘 =	2, the 
samples are: 𝑋d#

(4) = (𝑋4 + 𝑋#)/2, 𝑋d#
(#) = (𝑋A + 𝑋B)/2, and 

so on [15]. The plot log std[𝑋d6] × log 𝑘 is the climacogram of 
time series 𝑋7. Scaling characteristic of the climacogram is 
related to the sample length 𝑘. Together with R/S analysis, 
the climacogram method is a scaling approach for time series 
analysis, in opposition to the classical statistics [5]. 

It is worth noting that Koutsoyiannis has proposed the scaling 
approach as the antipode of nonstationarity approach [15], 
in the sense that the last one demands the separation of the 
time series in components (e.g., trend), while the scaling 
analysis models the trend as a large-scale stochastic 
component. In this way, the author states that “the existence 
of trends is the normal behaviour of real-world time series” 
[15], implying that the non-stationary behaviour is part of a 
random process in sufficient large time scale. 

The scope of this work does not aim at joining the 
scaling/stationarity vs. classical statistics/non-stationarity 
debate. Koutsoyiannis and his group admit that non-
stationarity could be accepted if it is associated with a clear 
physical explanation [5]. It suffices to say that climacogram is 
a valid technique for time series characterization and that is 
the focus of this work. 

The MATLAB® based function Climacogram.m, developed by 
G. Pouliasis for the calculation of the 𝑋d samples and their 
respective standard deviations, is available on the GitHub 
platform [16]. The function does not include bias correction 
(which is discussed in related works [15] [17] [18]) and an 
empirical rule states that the number of samples is given by 
10% of the series length (𝑛 = 𝑁/10). The slope 𝑚 of the 
log 𝜎6 × log𝑘 plot (climacogram) relates to the Hurst 
exponent through the relation 𝐻 = 1 − |𝑚|, as seen in 
equation 6. 

The Pouliasis’ routine has two features worth considering. 
First, for non-integer values of 𝑁/𝑘 the samples 𝑋d6

(!) do not 
cover the entire series 𝑋7. If, for instance for 𝑁 =	90 (the 
length of annual inflow series), the ratio 𝑁/𝑘 is integer for 
𝑘 =	1, 2, 3, 5, 6, 9. For 𝑘 =	4 and 8 the value 𝑘 ∙ int(𝑁/𝑘) =
	88 and, for 𝑘 =	7, the result is 84, which means that 2 or 6 
values of the series stay out of the climacogram. 

One way of addressing the entire time series is to take the 
series and analyse it as given (“original” climacogram) and 
after inversion (“inverted” climacogram). Figure 5 shows that 
the climacogram of the inverted series is unaffected when 
𝑁/𝑘 is an integer, showing different results for the non-
integer 𝑁/𝑘 values. 

As an alternative to the conventional procedure, it is 
proposed to take the averaged climacograms of both 
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“original” and “inverted” climacograms as the “corrected” 
climacogram, also shown in Figure 5. 

As an example of the effect of inverting the time series, one 
could the Nile River case, analysed by Koutsoyiannis [15]. 
Table 2 shows the results for the original, inverted, and 
corrected climacograms for the 663-year annual inflow time 
series [19] . Koutsoyiannis found 𝐻 =	0.85 for the same 
Nilometer series. 

 

Figure 5: Climacograms for a time series with 𝑁 =	90 and 
𝑘 = 1,… , 9, taken for original and inverted time series 

(average climacogram given as dashed line). 

Table 2: Climacogram analysis for the Nile River. “Corrected (1)” refers 
to the mean between “original” and “inverted”. 

Result Original Inverted Corrected (1) 
𝐻 0.858 0.853 0.855 
𝜎" 0.004 0.005 0.003 
𝑅# 0.9395 0.9312 0.9726 

As expected, the Hurst exponent for the corrected 
climacogram is the average between original and inverted 
climacograms, but the standard deviation 𝜎" is lower than 
the other two. Besides, the coefficient of determination 𝑅# 
for the linear regression is about 4% higher for the corrected 
climacogram, which indicates the benefit of this correction 
procedure. 

A second issue comes from the compression of points of 
large-scale values of the linearly distributed abscissa 𝑘 in a 
log-log plot, as shown in Figure 5. Eke et al. [3], for example, 
pointed out that determining the Hurst exponent with power 
spectral density suffers from overweighting of high 
frequencies, which should be avoided in the calculation. 
Climacogram plots resemble power spectral density, if 𝜎6 is 
changed by the power spectral density and the scale 𝑘 by the 
frequency (Koutsoyiannis calls the climacogram 
“pseudospectrum” [20]). Since 𝐻 is determined through 
linear regression of the climacogram log 𝜎6 × log𝑘 the 
gathering of points increases the weight of the larger scales, 
affecting the result. 

The solution proposed in this work was adapted from the 
routine by Wen and Liu for power spectral density evaluation 
[21] [22]. It starts with a log 𝑘 scale linearized with the 
operation log 𝑘′ = linspace(log 𝑘4 , log 𝑘# , 𝑛),1 where log 𝑘4 

 
1 Linearly spaced values generator. 

and log 𝑘# are the extremes of log 𝑘, 𝑛 is the sampling length 
and linspace.m is a MATLAB® function. Using the linear 
interpolation function interp1.m an alternate version 
log 𝜎′6 × log𝑘′ is obtained from the original climacogram. 

Figure 6 shows the same original climacogram from Figure 5 
and its alternate linearly spaced scale version. 

 

Figure 6: Climacograms for a time series with 𝑁 =	90, taken 
for original (𝑘) and linearly spaced (𝑘’) scales. 

Table 3 shows the correspondent results obtained for 
Nilometer time series. It is seen that the linear sampling has 
a greater benefit than the inversion, reducing standard 
deviation and increasing 𝑅#. As some points are still missing 
after linear sampling, the inversion procedure was also tried, 
with no change of 𝐻 ± 𝜎" and a reduction of 𝑅#. Hurst 
exponent determined with both corrected climacograms are 
close to the second decimal place. 

Table 3: Climacogram analysis for Nile River. “LS”: linearly spaced; 
“LS/I”: inverted after linearly spaced; “Corrected (2)”: mean between 
“LS” and “LS/I”. 

Result LS LS/I Corrected (2) 
𝐻 0.850 0.850 0.850 
𝜎" 0.002 0.002 0.002 
𝑅# 0.9906 0.9835 0.9923 

Other modifications of the original Pouliasis’ function 
Climacogram.m include the insertion of the routine in a 
loop, allowing the automatic calculation of all the series in 
each set, and the use of the polynomial curve fitting 
polyfit.m instead of fit.m, as the first is a basic MATLAB® 
function while the second one is part of specific toolboxes. 

2.4 Hydrological time series 

The Brazilian National System Operator (ONS) provides 
monthly inflow time series from Jan/1931 up to Dec/2020. 
The inflows are the difference between affluence and 
effluence (incremental inflow), corrected by the consumptive 
uses, evaporation, and hydropower plants (HPP) operation 
[23]. After this reconstitution procedure, they are referred to 
as “natural inflows”. 

Reconstituted natural inflows carry the uncertainty 
associated with the natural/artificial processes removed 
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from the measured data. The reason for their use in 
hydrological studies is that they represent the behaviour of 
the natural resource, while measured inflows are affected by 
human activities. An example of natural inflow times series is 
shown in Figure 7 (Marimbondo HPP), together with the 
corresponding annual average of monthly inflows. 

This example evidences the seasonality of monthly basis 
inflow. Since the scope of this work does not include this 
phenomenon, the analysis will focus on the annual inflow 
data. 

 

Figure 7: Inflow for Marimbondo HPP (Paraná Basin) in 
monthly (top) and annual (bottom) basis. 

ONS inflow database is composed of 217 time series, 
including fictitious power plants and other series that do not 
represent water resources engineering works with natural 
affluence, such as transposition between reservoirs and 
pumping power plants. Removing these events and 
considering only operating power plants with natural 
affluence, the database reduces to 148 hydropower plants, 
HPP. The criteria of analysis are the hydrographic region, HPP 
type (run-of-the-river power plants, reservoir power plant 
with regulation, and plain reservoir), and whether the HPP is 
located as the most upstream reservoir or not. 

3 Results 

This section shows the results for fractional Brownian motion 
and hydrological time series. 

3.1 Fractional processes 

Figure 8 resumes the analysis of the fGn series with R/S and 
climacogram methods. The Hurst exponents 𝐻9/; and 𝐻CDEF 
show similar behaviour in comparison with the expected 

Hurst exponent 𝐻$%& (equation 3). 𝐻9/; is closer to 𝐻$%& for 
higher 𝐻'()$*, but show large deviation when 𝐻'()$* is small. 
It can be seen that 𝐻CDEF ≈ 𝐻$%& for 𝐻'()$* lower than 0.7 
and that its standard deviation is lower in comparison to 
𝐻9/;. All considered, it can be said that the climacogram 
shows better performance than the R/S analysis of fGn series. 

 

Figure 8: Average Hurst exponents for 10 rated 𝐻 obtained 
with R/S and climacogram analyses (𝐻&'()*: straight line). 

 

 

Figure 9: Boxplot statistics for two rated Hurst exponents 
(grey shaded boxplots refer to the original and the inverted 
fGn series and white boxplots relate to the linearly spaced 

scale 𝑘′). 

The statistical analysis of the Hurst exponent determined 
with climacograms was made with boxplots, shown in Figure 
9 for 𝐻9()$* =	0.3 and 0.7. Results for the original fGn series 
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are given as grey shaded boxes, while the white boxes 
represent climacograms obtained with the linearly spaced 
scale 𝑘′. In each case, the inverted series, and the mean of 
inverted and non-inverted series (“Corrected” climacograms) 
are also shown. 𝐻$%& is represented as a straight dashed line 
in each plot. 

Figure 9 demonstrates, for fGn series, that the inversion of 
the series does not change the statistical behaviour. Linear 
sampling of log 𝑘′, on the contrary, reduces the range of the 
first and the third quartiles, the 1.5 interquartile (whiskers) 
range, the difference between average 𝐻CDEF and 𝐻$%&, and 
the number of outliers. The inversion of fGn series after 
performing linear sampling did not improve the statistics of 
𝐻CDEF. 

3.2 Hydrological time series – Brazil 

Small sample corrected 𝐻9/; for the 148 annual inflow time 
series is 0.58 ± 0.06. Arbitrating that 𝐻 =	0.50 ± 0.02 is the 
range of uncorrelated non-persistency, it was found that only 
27 time series are non-persistent, and 121 HPP show 
persistent behaviour. For 𝐻CDEF, only six HPP have non-
persistent time series under the same arbitrary range. 

The analysis per hydrographic region is shown in Table 4. It is 
observed that 𝐻CDEF > 𝐻9/; in all cases, the difference 
ranging from 14% (Southern Atlantic) up to 26% (Paraguay). 
Considering all 148 HPP, only four time series (located in the 
Southern Atlantic region) show 𝐻CDEF < 𝐻9/;. 

Table 4: Hurst exponents for the different hydrographic regions (148 
HPP inflows). 

Hydrographic region 𝑯𝑹/𝑺 𝑯𝐜𝐥𝐢𝐦 (linearly 
spaced) 

Amazon 0.59 ± 0.08 0.68 ± 0.12 
Tocantins-Araguaia 0.64 ± 0.02 0.76 ± 0.04 
Parnaíba 0.67 0.80 
São Francisco 0.68 ± 0.03 0.81 ± 0.04 
Eastern Atlantic 0.60 ± 0.06 0.72 ± 0.08 
Paraguay 0.68 ± 0.03 0.86 ± 0.06 
Paraná 0.57 ± 0.05 0.70 ± 0.07 
Southeastern Atlantic 0.59 ± 0.05 0.69 ± 0.08 
Southern Atlantic 0.55 ± 0.02 0.61 ± 0.10 
Uruguay 0.52 ± 0.01 0.59 ± 0.04 

Inflow time series at Uruguay hydrographic region show the 
lowest persistence as determined by both methods. The ten 
regions can be grouped by average Hurst exponent values, 
with little difference in the order. Taking as threshold values 
𝐻o9/; =	0.60 and 𝐻oCDEF =	0.72, six regions (Amazon, Eastern 
Atlantic, Paraná, South-eastern Atlantic, Southern Atlantic, 
and Uruguay) have Hurst exponents computed from both 
methods below the thresholds 𝐻p ≤ 𝐻o. These six regions 
include 128 of the 148 river most upstream inflow time 
series, with an average inflow of 1,024 m3/s. Four 
hydrographic regions (Tocantins-Araguaia, Parnaíba, São 
Francisco, and Paraguay) show 𝐻 > 𝐻o. This group is 
composed by the remaining 20 inflow time series, with 
average inflow equal to 1,676 m3/s. 

Figure 10 shows the boxplot analysis for the climacograms 
obtained for the 148 inflow time series provided by ONS for 
operating the HPP. The average 𝐻pCDEF changes from 0.688 
(for original time series) to 0.711 (inverted linearly sampled 
time series), an increase of 3.3%. Box/whiskers ranges also 
increase due to the inversion of the time series together with 
outlier removal. In this way, the mean between linearly 
spaced climacograms of the original and inverted (“Corrected 
2”) series offers a more reliable Hurst exponent 𝐻CDEF for the 
inflow time series. 

Figure 11 shows the linearly spaced corrected 𝐻CDEF for the 
set of the 148 HPP located in Brazilian territory. Since there 
are no hydropower plants in the two North-eastern Atlantic 
regions and, the Parnaíba region has only one HPP, these 
regions were merged with São Francisco hydrographic 
region. 

 

Figure 10: Boxplot statistics for 148 inflows (grey shaded 
boxplots: original and inverted time series, white  

boxplots: linearly spaced scale 𝑘′). 
 

 

Figure 11: Brazilian map showing the location of the 148 
operating HPP (corrected 𝐻:;<= is shown in bubble plot and 

the hydrographic regions limits in grey). 
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Only four HPP showed 𝐻CDEF ≲	0.5: Dona Francisca, Passo 
Real, and Jacuí (located in the Southern Atlantic hydrographic 
region), and Samuel (at Amazon region). Persistence (𝐻CDEF >
	0.5) varied along the territory, with predominance of higher 
values in the Centre-Western and Northeastern regions (as 
seen in Table 4). The Amazon region has no border with the 
other hydrographic regions with 𝐻p ≤ 𝐻o, indicating that the 
Hurst exponent behaviour is not controlled by geographic 
location. Average Hurst exponents with both methods are 
𝐻p9/; =	0.58 ± 0.06 and 𝐻pCDEF =	0.70 ± 0.10 for the set of the 
148 HPPs. 

Restricting the Hurst exponent analysis to power plants 
located at the most upstream river locations avoids 
ambiguities with cascading power plants data (in general, 
obtained by linear regression). Since the calculation of inflow 
time series involves removing the effect of HPP operation, 
the most upstream river located power plants and reservoirs 
are less affected by this procedure. For the 50 river the most 
upstream points (reservoirs, run-of-the-river HPPs, and HPPs 
with regulated reservoirs) the analysis results are 𝐻p9/; =
	0.59 ± 0.07, and 𝐻pCDEF =	0.70 ± 0.11, higher but still very 
close to the values obtained for all 148 HPPs. 

The analysis of inflows according to the kind of HPP together 
with the most upstream river effect is shown in Table 5. The 
most upstream river HPP show higher Hurst exponents than 
the 148-HPP database for run-of-the-river HPPs and 
regulated reservoirs. The most upstream river reservoir HPP 
has the same values of 𝐻, but present higher dispersion. 

The HPP type also affects the performance of the Hurst 
exponent methods. Considering the 148-HPP (river head) 
databases, the difference between 𝐻CDEF and 𝐻9/; is 21% 
(21%) for the run-of-the-river HPPs, 18% (18%) for regulated 
reservoir HPPs, and 23% (37%) for plain reservoirs. 

Table 5: Hurst exponents for the different hydropower plants. 
HPP type (148 HPP) 𝑯𝑹/𝑺 𝑯𝐜𝐥𝐢𝐦 (Corr. 

2) 
Run-of-river HPP (81 pts.) 0.59 ± 0.06 0.71 ± 0.10 

Dam HPP (61 pts.) 0.58 ± 0.06 0.69 ± 0.10 
Reservoir (6 pts.) 0.56 ± 0.04 0.67 ± 0.09 

 

HPP type (river head, 50 
HPP) 

𝑯𝑹/𝑺 𝑯𝐜𝐥𝐢𝐦 (Corr. 
2) 

Run-of-river HPP (18 pts.) 0.61 ± 0.07 0.72 ± 0.11 
Dam HPP (31 pts.) 0.58 ± 0.07 0.69 ± 0.11 
Reservoir (1 pt.) 0.53 0.71 

One last comparison of both methods for the Hurst exponent 
determination is the linear Pearson correlation as a function 
of the hydrographic region. Table 6 shows the correlation 
coefficient between the sets of 𝐻 values obtained with both 
methods for all HPPs of each region (descending order of 𝑟G). 
With only one HPP, Parnaíba region is not on the list. 

No geographic pattern is identified. For example, the group 
with higher correlation coefficients (𝑟G ≥	0.9) includes 
hydrographic regions in the North, Northeast, and Centre-
West of Brazil. There is a second group with 0.6	< 𝑟G <	0.9 
located in the Centre, Southeast, and South of Brazil. It is 
noted that the two hydrographic regions with lower 

correlation coefficients are situated in the Brazilian Southern 
and Northeastern geographic regions, the Uruguay region 
being the only one with no correlation.  

Table 6: Pearson correlation coefficient 𝑟> between Hurst exponent 
methods. 

Hydrographic region Number of 
HPP 

𝒓𝑷E𝑯𝐑/𝐒, 𝑯𝐜𝐥𝐢𝐦F 

Eastern Atlantic 4 0.984 
Amazon 17 0.951 
Tocantins-Araguaia 7 0.906 
Paraná 67 0.814 
Southeastern 
Atlantic 

18 0.731 

Paraguay 5 0.658 
Southern Atlantic 10 0.642 
São Francisco 7 0.449 
Uruguay 12 0.193 

Coefficients of correlation higher than 0.8 (strong 
correlation) can be accepted as statistical differences in the 
methods performance. The behaviour of the Uruguay (no 
correlation) and São Francisco regions (weak correlation) 
indicates that both inflow time series are more sensitive to 
the Hurst exponent method. 

Besides the separation of hydrographic regions according to 
the Hurst exponents below or above 𝐻o ranges and a trend of 
higher 𝐻 at the centre of the Brazilian territory, no pattern 
can be seen from Figure 11. In this way, the Paraná 
hydrographic region (with almost half of the HPPs) is worth 
analysing. 

3.3 Hydrological time series – Paraná Region 

The 67 HPPs of the Paraná hydrographic region are shown in 
Figure 12. The five river basins that integrate the region are 
(from upstream to downstream): Paranaíba, Grande, Tietê, 
Paranapanema, and Iguaçu. Besides the river basins there are 
the HPPs located in the Paraná River itself: Ilha Solteira, Jupiá, 
Porto Primavera, and Itaipu. 

 

Figure 12. Bubble plot of Paraná hydrographic region and 
its river basins. 
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Espora HPP shows the highest value for the set of the Hurst 
exponents (𝐻CDEF =	0.96). This and other five power plants 
are referred to as “Paranaíba subgroup”, as they are closer to 
each other (just upstream Ilha Solteira HPP) and have higher 
𝐻CDEF than the rest of the basin’s HPPs. The lowest 𝐻CDEF 
occurs for Foz do Areia, the first HPP in the Iguaçu basin. 

Table 7 shows the results of R/S analysis and the climacogram 
for the HPPs in the Paraná hydrographic region.  

Table 7: Hurst exponents for the Paraná river basins. 
River basin 𝑯𝑹/𝑺 𝑯𝐜𝐥𝐢𝐦 

(inverted) 
Paranaíba 0.62 ± 0.03 0.76 ± 0.07 
Paranaíba subgroup 0.65 ± 0.02 0.85 ± 0.06 
Grande 0.57 ± 0.01 0.72 ± 0.01 
Ilha Solteira HPP 0.57 0.76 
Tietê 0.57 ± 0.04 0.71 ± 0.08 
Jupiá HPP 0.58 0.79 
Porto Primavera 
HPP 

0.58 0.82 

Paranapanema 0.53 ± 0.01 0.67 ± 0.06 
Itaipu HPP 0.54 0.84 
Iguaçu 0.50 ± 0.01 0.60 ± 0.03 

The Paranaíba subgroup and the four Paraná River HPPs show 
the highest Hurst exponents obtained with climacogram 
(𝐻CDEF	~	0.8); when using R/S analysis, only the complete 
Paranaíba basin shows 𝐻9/; >	0.6. Table 7 indicates that 
𝐻9/; decreases the further downstream the HPP is, an 
undetected behaviour for H_clim. 

4 Conclusions 

In this work, two methods for Hurst exponent calculation (R/S 
analysis and climacograms) are evaluated. R/S analysis is 
performed with two computing tools (MATLAB© and 
OriginPro©), both using a correction for small number of 
observations. Climacograms were obtained with a routine 
based on work by ITIA research group, modified in two 
fashions: the inversion of time series and the linear sampling 
on log-scale. 

A MATLAB© function was used for fractional Gaussian noise 
(fGn) synthesis, optimized with downsampling factor 
tunning. Climacograms of fGn series showed that inverting 
the time series did not change the performance (measured 
as the absolute difference against the rated Hurst exponent), 
but linear sampling improved the statistics, by means of 
reduction of quartile ranges and number of outliers. The 
reason for the resulting effect of linear sampling of log 𝑘′ 
resides on the homogeneous weighting through the scale 
during the linear regression of the climacogram log 𝜎′6 ×
log𝑘′. 

The available routine for climacogram calculation was 
improved with two modifications: the inversion of time 
series, which avoids the exclusion of some points from the 
analysis, and the linear sampling of the logarithmic scale, 
which balances the weight of all scales in the final 
climacogram.  

The effect of linear sampling on the annual inflow time series 
is not as evident as for fGn series, probably due to the series 
length (𝑁 = 90), that it is small when compared to fGn time 
series (𝑁 =	500). Climacograms were calculated on samples 
𝑋d6
(!) (𝑛 = 𝑁/10), which do not cover the whole series when 

the ratio between series length 𝑁 and the scale 𝑘 is a non-
integer. When this is the case, some of the time series values 
are not considered in the climacogram. In this way, the 
proposed alternative is to calculate the linearly sampled 
climacogram for the original one and the inverted inflow time 
series and calculating the mean between the two 
climacograms. 

The study of the Hurst exponent can be helpful in the analysis 
of long-range behaviour for inflow time series, but it is 
necessary to consider that different methods can lead to 
different results, as shown in this work. 

For the 148 HPPs, the climacogram based the Hurst exponent 
shows higher values, with a ratio of 𝐻CDEF/𝐻9/; =	1.2 ± 0.1. 
The following average Hurst exponents were determined: 
𝐻p9/; = 0.58 ± 0.06 and 𝐻pCDEF = 0.70 ± 0.10. Nine HPP’s are 
non-persistent, with 𝐻9/; ≲ 0.5, and only four have 𝐻CDEF ≲ 
0.5. The analysis by hydrographic regions has shown 𝐻9/; 
with a decreasing trend from upstream to downstream, a 
behaviour not seen for 𝐻CDEF.  

Taking arbitrary threshold ranges, 𝐻o9/; =	0.60 and 𝐻oCDEF =
	0.72, it was verified that, for both methods, 𝐻 < 𝐻o for six 
hydrographic regions (Amazon, Eastern Atlantic, Paraná, 
Southeastern Atlantic, Southern Atlantic, and Uruguay) and 
that 𝐻 > 𝐻o for the four remaining regions (Tocantins-
Araguaia, Parnaíba, São Francisco, and Paraguay).  

The methods are applied to 50 river head annual inflow time 
series. The inflows show persistence in all cases for 𝐻CDEF, and 
in all but three time series, for 𝐻9/;. The behaviour of 𝐻 as a 
function of localization depends on the method. The 
exception is the Uruguay hydrographic region, which shows 
the lowest values for both 𝐻9/; and 𝐻NDEF. No pattern is 
detected when the analysis is done as a function of the type 
of HPP. 

Bubble maps indicate the variation of the Hurst exponent 
over the Brazilian territory. No pattern is seen, except for a 
trend of smaller 𝐻 values in the far north and far south 
regions.  

The Pearson correlation coefficient between 𝐻9/; and 𝐻NDEF 
indicates that the methods are similar, but do not present the 
same behaviour. For eight hydrographic regions, the 
coefficients are in the range 0.6	< 𝑟G <	1 (moderate to 
strong correlation), but two regions show weak (São 
Francisco) or no correlation at all (Uruguay), being more 
sensitive to the Hurst exponent method. This indicates that 
the inflow time series can be governed by local features. 

The analysis of the Paraná hydrographic region shows that six 
HPPs in the Paranaíba basin (“Paranaíba subgroup”) and the 
four HPPs located on the Paraná River have the highest Hurst 
exponents (𝐻NDEF ≥ 0.8). Only the HPPs at the Paranaíba 
basin showed 𝐻9/; > 0.6. 
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Considering that the Hurst exponent is an important 
parameter for long-term behaviour analysis, this work shows 
that there is some degree of dependence on the method 
selected to perform it. The results show a global difference of 
20% between the R/S analysis and the climacogram method. 
Nevertheless, it is seen that the inflow time series are 
persistent (𝐻 > 0.5) with few non-correlated exceptions. 

The climacogram analysis can be improved with the linear 
sampling (avoiding overweighting of the larger scales) and 
using the inversion of time series order (which mitigates the 
effect of unanalysed points). 
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